- Home
- Member
- Toru
- Toru's entries
- Collatz Conjecture

# Collatz Conjecture

Today, I wrote a program source of Collatz Conjecture.

Although this is one of the unsolved problems in number theory, it's very simple.

For all natural number n, think that you do the following.

・If n is even number, divide n by two.

・If n is odd number, multiply n by three and add one to the result.

It has been expected that n will always reach one in a finite trial.

This problem has not been solved from about 80 years ago.

By using computer, it was confirmed that this conjecture is correct until about 10^18, but it does not much make sense.

I hope it will be solved during my life.

Although this is one of the unsolved problems in number theory, it's very simple.

For all natural number n, think that you do the following.

・If n is even number, divide n by two.

・If n is odd number, multiply n by three and add one to the result.

It has been expected that n will always reach one in a finite trial.

This problem has not been solved from about 80 years ago.

By using computer, it was confirmed that this conjecture is correct until about 10^18, but it does not much make sense.

I hope it will be solved during my life.

今日は、コラッツの問題のプログラムを書きました。

これは数論における未解決問題の一つですが、とてもシンプルです。

全ての自然数 n に対して、以下の操作を行います。

・偶数ならば、2で割る。

・奇数ならば、3を乗じて1を足す。

そうすると、有限回の試行で必ず1に到達するという予想です。

この問題は、約80年解かれていません。

コンピュータで10^18乗くらいまでこの予想が正しいことが確認されていますが、コンピュータでの計算を繰り返しても意味がありません。

私が生きているうちに、解かれることを願っています。

これは数論における未解決問題の一つですが、とてもシンプルです。

全ての自然数 n に対して、以下の操作を行います。

・偶数ならば、2で割る。

・奇数ならば、3を乗じて1を足す。

そうすると、有限回の試行で必ず1に到達するという予想です。

この問題は、約80年解かれていません。

コンピュータで10^18乗くらいまでこの予想が正しいことが確認されていますが、コンピュータでの計算を繰り返しても意味がありません。

私が生きているうちに、解かれることを願っています。

### Journal Statistics

### Latest entries

Tajitatan (多事多端 - Eventful) (1) |

Typhoon No. 19 (2) |

Unlucky Coins Part 2 (2) |

Unlucky Coins Part 1 (0) |

Five-yen Coin (0) |

Today, I wrote a program source for the Collatz Conjecture.

For all natural numbers n, imagine that you do the following:

・If n is an even number, divide n by two.

・If n is an odd number, multiply n by three and add one to the result.

It has been expected that n will always reach one in a finite number of iterations.

This problem has not been solved for about 80 years ago.

By using a computer, it was confirmed that this conjecture is correct until about 10^18, but it does not make much sense.